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SUMMARY 

The streamfunction-vorticity equations for incompressible two-dimensional flows are uncoupled and solved 
in sequence by the finite element method. The vorticity at no-slip boundaries is evaluated in the framework 
of the streamfunction equation. The resulting scheme achieves convergence, even for very high values of 
the Reynolds number, without the traditional need for upwinding. The stability and accuracy of the 
approach are demonstrated by the solution of two well-known benchmark problems: flow in a lid-driven 
cavity at Re < l0,OOO and flow over a backward-facing step at Re = 800. 
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1. INTRODUCTION 

In the analysis of two-dimensional incompressible flows the streamfunction-vorticity formula- 
tion of the Navier-Stokes equations allows the elimination of pressure from the problem and 
automatically satisfies the continuity constraint. On the other hand, the value of the vorticity 
at no-slip boundaries is difficult to specify and a poor evaluation of this boundary condition 
leads, almost invariably, to serious difficulties in obtaining a converged solution.' Traditional 
finite element approaches based on finite difference formulae for the wall vorticity are generally 
limited to regular domains and to low-Reynolds-number flows. Therefore in recent years a lot 
of effort has been devoted to the consistent specification of the vorticity at no-slip boundaries 
in the context of both Galerkin and control-volume-based finite element  method^.^-^ 

A guideline for a correct specification of boundary conditions at no-slip walls has been given 
by Roache.' His numerical recipe can be summarized as follows: at no-slip wallsjirst specify the 
streamfunction and then, in the procurement of the wall vorticity, utilize the additional information 
on the normal component of the streamfunction. In this way the boundary conditions for the 
streamfunction are not overspecified and the wall vorticity is correctly related to the tangential 
component of the velocity. Obviously, at stationary walls the tangential component of the 
velocity is zero, but at moving walls serious errors may result if the gradient of the streamfunction 
is not properly taken into account. These ideas have been incorporated in the control-volume- 
based finite element method6 and have also been utilized to develop a postprocessing formula 
for approximating the vorticity on the boundary in either finite element or finite difference 
computations.' 

For the implementation of the no-slip boundary condition in the context of the finite element 

CCC 0271-2091/94/180513-13 
0 1994 by John Wiley & Sons, Ltd. 

Received September 1993 
Revised April 1994 



514 G.  COMINI. M. MANZAN AND C. NONINO 

method various approaches have been followed, ranging from fully integrated to fully segregated 
procedures. In Reference 2 the streamfunction, the wall vorticity and the field vorticity are 
computed simultaneously. In Reference 5 first the streamfunction and the wall vorticity are 
solved simultaneously and then the field vorticity is solved separately. In the present study we 
solve first the streamfunction equation, then we compute the wall vorticity as suggested in 
Reference 8 and finally we compute the field vorticity. In this way we generalize the results of 
Reference 5, following a fully segregated approach in which the two differential equations are 
completely uncoupled and dealt with in sequence. Moreover, in the discretization of the 
streamfunction equation our approach leads to smaller matrices and preserves the symmetry, 
which is lost in Reference 5 because of the simultaneous solution of streamfunction and wall 
vorticity. 

In the finite element formulation we rely on the Bubnov-Galerkin method for space 
discretization, without using any upwinding technique. Thus we reach convergence, even for 
very high values of the Reynolds number, without exploiting the effects of the numerical viscosity 
introduced by most upwinding procedures. The stability and accuracy of our approach are 
demonstrated by the solution of two well-known benchmark problems: flow in a lid-driven 
cavity at  Re ,< 10,ooO and flow over a backward-facing step at Re = 800. 

2. STATEMENT OF THE PROBLEM 

For two-dimensional incompressible laminar flows the streamfunction and vorticity equations 
can be written in dimensionless form as4*6-9 

a 2 + / a X 2  + a 2 + / a y 2  = (1) 

and 

respectively. In the above equations i+b is the streamfunction, x and y are Cartesian co-ordinates, 

= a+/ay (3) 

and 

= - a+/ax (4) 

are the velocity components in the x- and y-directions respectively, 

-o = ao/ax - au/ay ( 5 )  

is the vorticity, t is the time, b is the body force and Re is the Reynolds number. 
In the problems considered here we have inflow boundaries, outflow boundaries and no-slip 

walls that can be either stationary or moving. At inflow boundaries the velocity field is completely 
specified and consequently we know the tangential velocity component us, the normal velocity 
component u, and their derivatives with respect to n and s. Thus at  inflow boundaries we can 
compute the values of the vorticity as 

(6) -o = auJan - aujas = 
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and we can prescribe these values as boundary conditions of the first kind for equation 
(2). Furthermore, at inflow boundaries we can also prescribe the normal derivative of the stream- 
function 

a+lan = -us (7) 

as a general boundary condition of the second kind for equation (1). Usually at inflow boundaries 
we have an orthogonal incoming flow with us = 0, but we can also have us different from zero, 
leading to a skew incoming flow. 

At outflow boundaries we generally assume fully developed flow conditions and a zero 
tangential velocity, leading to the boundary condition 

awpn = 0 (8) 

and 

a + p n  = o (9) 

for the vorticity and streamfunction respectively. 
At no-slip boundaries the value of the streamfunction is known, 

* = *lI? (10) 

since the walls are also streamlines. On the other hand, the tangential component of the velocity 
must be specified too, leading to the additional boundary condition of the second kind yielded 
by equation (7). However, this additional condition cannot be used for the solution of the 
streamfunction equation because it would overspecify the problem.' Consequently the informa- 
tion on the gradient of the streamfunction must be incorporated in the boundary condition for 
the vorticity. Therefore at no-slip boundaries we must obtain the values of the wall vorticity 
from a solution of equation (1) where condition (7) is taken into account. These ideas are 
implemented in the finite element formulation illustrated in the next section. 

3. FINITE ELEMENT FORMULATION 

As usual we approximate the unknown variables throughout the solution domain by means of 
the standard expansions 

n + z 1 Ni$i = N\lr 
i =  1 

and 

w~ Niwi=No,  
i = l  

where Ni are shape functions, $i and wi are nodal values of w and $ respectively and n is the 
total number of nodes in the discretization. Substituting equations (1 1) and (12) into equations 
(1) and (2) and following the Bubnov-Galerkin method, we arrive at two systems of space- 
discretized equations which can be written in matrix form as 

K\lr=Mo-q  (13) 



516 G. COMINI. M. MANZAN AND C.  NONINO 

and 

MW + (K + A)CO = S. (14) 

In the above equations we have 

and we refer to the usual definitions of matrix and vector entries 

and 

dNi dN,  dNi a N .  
K j j  = Jl-- - + __ 2 

ax ax ay ay 

M..= NiNjdR,  
" J* 

r 
qi = J N i u ,  d r ,  

r 

Aij = Re jn Ni(u 5 + u 
ax ay 

si = In N i b  do .  

In the above equations R is the domain, r is the no-slip boundary and we have i, j = 1, . . . , n. 
Equations ( 1  3) and (14) can be decoupled and solved in sequence, provided that special care 

is taken to properly represent the boundary conditions. Our calculation procedure to advance 
from the time step m 2 0 to the time step m + 1 can be described as follows. 

First, from equation (13) and the values of vorticity at the time step m we compute the new 
values of the streamfunction as 

JI"" = K-'(Md" - q). (21) 

In the solution of the streamfunction equation the nodal values $i are known at both stationary 
and moving walls. Thus in system (21) we eliminate the corresponding equations which are the 
only ones where the entries in the vector q can be different from zero. 

Then, from equation (13) and the values of the streamfunction obtained from equation (21) 
we compute the values of vorticity at no-slip boundaries as 

+ 419 (22) = M-l(KJIm+' 

where the entries in the vector q are taken into account and calculated according to equation 
(18). Actually, in system (22) we do not even have to consider a complete new solution, since 
the computations involve only a strip of elements adjacent to the walls. 

Finally, by estimating the velocity components at the previous time step as 

= (a$/ay)m (23) 

urn = -(a$/ax)m, (24) 

and 
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we can linearize and integrate, with respect to time, equation (14). Using standard finite difference 
approximation for the time variable, we obtain a recursive scheme for time integration, 

a"'+ = (" + 9(K + A"'))-'[(" - (1 - S)(K + A")>o" + s], 
At At 

that leads to the explicit algorithm for 9 = 0, to the Crank-Nicolson algorithm for 9 = and 
to the fully implicit algorithm for 9 = 1. 

Once a solution has been obtained in terms of streamfunction and vorticity, the evaluation 
of velocity components at the nodes can be easily obtained from the weighted residual 
approximations of equations (3) and (4). 

4. RESULTS AND DISCUSSION 

The examples presented here concern steady state solutions of two well-known benchmark 
problems: flow in a lid-driven cavity and flow over a backward-facing step. Since we were only 
interested in the stationary results obtained from pseudotransient simulations, we always used 
the fully implicit algorithm for time integration. In this way we were able to consistently exceed 
by a factor of about 10 the stability limits for explicit algorithms. As a convergence criterion we 
considered the difference in computed streamfunction fields and we terminated the calculation 
when the Euclidean norm of changes between two consecutive time steps was less than 
In the numerical simulations we employed only the conventional Bubnov-Galerkin formulation 
described in the previous section, with four-node and eight-node isoparametric elements and 
consistent mass matrices. The systems of algebraic equations obtained from the finite element 
discretizations were solved by means of iterative procedures derived from the family of 
preconditioned conjugate gradient (CG) and preconditioned conjugate residual (CR) me- 
thods.".' ' We used a non-symmetric conjugate gradient squared (CGS) solver for the vorticity 
equation and a symmetric CR solver for the streamfunction equation. In this way we took full 
advantage of the symmetric, positive definite nature of the coefficient matrix of the discretized 
streamfunction equation resulting from our formulation. 

Flow in a lid-driven square cavity 

To study the dependence of the time step on the spatial spacing and to investigate the accuracy 
of the method, we considered first a sequence of uniformly spaced grids of linear elements 
consisting of 21 x 21, 31 x 31 and 41 x 41 mesh points. Instead, for the solution of the 
benchmark problem we used 41 x 41 grid points (40 x 40 elements) with a finer mesh 
subdivision near the walls. The mesh employed in the final calculations is shown in Figure 1 
together with the imposed boundary conditions. The smallest dimensionless element size is 0-008 
at the four corners and the largest is 0.04 at the centre of the cavity. The selected Reynolds 
numbers are based on the lid velocity and on the reference length given by the depth (and width) 
of the square cavity. 

Numerous researchers have performed computations for Re = 1OOO. Thus the flow conditions 
defined by this Reynolds number were chosen to investigate the influence of the mesh design 
on our solution. The essential feature of the test problem is the prediction of locations and 
intensities of various vortices inside the cavity. In Table I we show for the various meshes the 
minimum value of the streamfunction, the corresponding location of the primary vortex centre 
and the time step used. As we can see, with the finer meshes the results become rather insensitive 
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Figure 1 .  Finite element mesh and boundary conditions for a two-dimensional laminar flow in a lid-driven cavity 

Table 1. Dependence of the results and the time step on the mesh 
used at Re = loo0 

Primary vortex Centre 
Time step 

Grid X Y $ At 

21 x 21 regular 0529 0.586 -0.108 0 5  
31 x 31 regular 0.530 0.570 -0.117 0.4 
41 x 41 regular 0.530 0567 -0.119 0.25 
41 x 41 stretched 0 5 3 1  0.565 -0.119 0.02 

to the subdivision of the domain, while the time step depends on the dimension of the smallest 
elements and must be reduced even if the mesh is only stretched. 

As we have already pointed out, we used a fully implicit time integration algorithm to obtain 
the steady state (converged) solutions. Thus an essential question of this study is the long-term 
behaviour of the solution fields. A good indication of whether or not the governing equations 
are converging is given by the behaviour of the Euclidean norm of the residuals. The residuals 
at the time step m can be defined as 

r z  = Mci, = s - (K + A"')d" 

rf = (Ma" - q) - KJI" 

(26) 

and 

(27) 

for the vorticity and streamfunction equations respectively. Thus a convergence criterion can be 
easily established by considering the relative residuals 

r; = Ilrz112/11r00112 (28) 
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Figure 2. Normalized residuals for the lid-driven cavity flow. For the same Reynolds number the normalized residuals 
of the vorticity and streamfunction are practically indistinguishable 

and 

r: = l l ~ ~ l l z / l l ~ ~ l l z  (29) 
defined as ratios of the Euclidean norm of the current residual to the Euclidean norm of the 
initial residual. In Figure 2 we plot the normalized residuals of the vorticity and streamfunction 
for the different values of the Reynolds number with reference to the subdivision of the domain 
illustrated in Figure 1. The plot demonstrates the clear tendency of our algorithm towards 
convergence and shows that the normalized residuals of the vorticity and streamfunction 
pertaining to the same Reynolds number are practically indistinguishable. The Euclidean norm 
of changes in the streamfunction between two consecutive steps behaves like the residuals. 
Therefore in our applications we could confidently choose a convergence criterion based on this 
norm. 

The flow conditions investigated in the final calculations concern the Reynolds numbers 400, 
1000, 5000 and l0,OOO. For Re = 400 and 1000 we started from uniform initial conditions 
I) = w = 0, while for higher values of the Reynolds number we used as initial conditions the 
steady state solution corresponding to a lower Reynolds number. The time steps employed were 
Ac = 0.01 for Re = 400 and At = 002 for all other flow conditions. The number of time steps 
required to reach convergence ranged from a minimum of about 1100 for Re = 400, starting 
from uniform initial conditions, to a maximum of about 2400 for Re = IO,OOO, starting from the 
stationary flow conditions at Re = 5000. 

The streamfunction contours are shown in Figure 3 and the values of t,b along the contours 
are listed in Table 11. These results compare very favourably with some of the most reliable data 
reported in the even though we used a lower number of nodal points. In fact, 
Ghia et al.” used 129 x 129 mesh points for Re < 3200 and 257 x 257 mesh points for 
Re 2 5000, Sohn14 used 40 x 40 nine-node elements (81 x 81 grid points), while Gresho et 
and Tanahashi et al.” used 50 x 50 linear elements (51 x 51 grid points). In Figure 4 we compare 
our predictions of the velocity profiles through the centre of the cavity with those of Ghia et 
ul.,’ demonstrating excellent agreement for all Reynolds numbers. Finally, to obtain some more 
quantitative comparisons with the results of References 12-14, in Table 111 we report the extreme 
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Re=SOOO Re=IOOOO 
Figure 3. Streamfunction contours in a lid-driven cavity for different Reynolds numbers (contour values are reported 

in Table 11) 

Table 11. Values of streamline contours in Figure 3 

Contour Streamfunction Contour Streamfunction Contour Streamfunction 
letter rl. letter JI number + 

a h - 00700 1 1.0 x 10-7 -1.0 x 10-'0 
b -1.0 x 10-7 I - 0~0900 2 1-0 x 10-5 
C -1.0 x 10-5 j -0.lOOo 3 1.0 x 10-4 

-0.1 100 4 5.0 x 10-4 d -1.0 x 10-4 k 
e 5 1.5 x 10-3 
f -0.0300 m -01175 6 3.0 x 10-3 
B - O-05Oo n -0.1200 

-0~0100 I -01150 

values of the streamfunction. On average our values are in better agreement with the results of 
Ghia et al.' than most published finite element results. 

Flow over a backward-facing step 
The geometry and boundary conditions defining the test problem are shown in Figure 5 (a), 

while the mesh employed in the numerical simulations is shown in Figure 5 (b). The aspect ratio 
of the step to the channel height is 1:2, giving a step height equal to one-half of the channel 
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Figure 4. Velocity profiles through the centre of a liddriven cavity for different Reynolds numbers (-, present work; 
0, Reference 12) 

Table 111. Extreme values of streamfunctions at various vortices inside a lid-driven cavity 

Primary Bottom Bottom Bottom Bottom 
Re vortex Top left left 1 left 2 right 1 right 2 Reference 

400 -0.114 1.23 x 6.38 x lo-’ -2.02 x lo-’ Present work 
-0.1 14 1.42 x lo-’ -7-67 x lo-’’ 6.42 x lo-’ -1.87 x lo-’ Ghia er al.” 
-0112 1.32 x lo-’ 6.13 x lo-‘ -1.63 x lo-’ Sohn“ 

lo00 -0119 2.41 x 1.76 x lo-’ -605 x lo-’ Present work 
-0118 2.31 x lo-‘ -1.14 x 1.75 x lo-’ -9.32 x lo-* Ghia et 
-0.114 2.00 x 10-4 1.76 x lo-’ -1.80 x lo-* Greshoeral.” 
-0.115 2.17 x 1.63 x lo-’ -1.20 x lo-’ Sohn14 

5000 -0.122 1.53 x lo-’ 1.37 x lo-’ -7.83 x lo-’ 3.25 x lo-’ -1.97 x Present work 
-0.119 1.46 x lo-’ 1.36 x lo-’ -7.09 x lo-’ 3.08 x lo-’ -1.43 x Ghia er a/.” 
-0.109 1.23 x lo-’ 1.49 x lo-’ -2.85 x lo-’ 3.87 x lo-’ -5.22 x lo-’ Greshoeral.” 
-0.115 1.28 x lo-’ 1.25 x lo-’ -4.93 x lo-’ 2.80 x lo-’ -7.12 x lo-’ SohnI4 

loo00 -0.120 2.57 x lo-’ 1.44 x lo-’ -4.48 x 3.34-10-’ -1.54 x lo-’ Present work 
-0.120 2.42 x lo-’ 1.52 x lo-’ -7.76 x 3.42 x lo-’ - 1.31 x lo-* Ghia cr 
-0.101 2.23 x lo-’ 1.93 x lo-’ -3.08 x lo-’ 554 x lo-’ -2.02 x lo-* Greshoera/.” 
-0.112 2.18 x lo-’ 1.37 x lo-’ -4.07 x lo-’ 2.80 x lo-’ -6.81 x lo-’ Sohn“ 
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Figure 5. Two-dimensional flow over a backward-facing step: (a) geometry and boundary conditions; (b) finite element 
mesh 

height, while the total length in the horizontal direction is 30 times the channel height. The 
boundary conditions include the usual no-slip velocity specification for all solid surfaces and a 
fully developed flow at the outlet. The inlet velocity profile corresponds to a fully developed 
laminar flow parallel to the channel axis, with a dimensionless parabolic, horizontal velocity 
component which yields an average inflow velocity ii = 1. The values of the vorticity at the inlet 
are computed by substituting the values of the velocity components into equation (9). About 
2000 steps were required to reach convergence, starting from uniform initial conditions 1(1 = w = 0 
and using a time step At = 0-2. 

To compare our results with the benchmark results of Gartling,16 we assumed a value of 
Re = 800 for the Reynolds number based on the average inflow velocity and on the channel 
height. We used 8 x 120 eight-node parabolic elements (3137 grid points) with a mesh uniform 
across the channel. In the streamwise direction the mesh was uniformly distributed up to x = 15, 
while it was smoothly graded for x > 15. In this way we followed the mesh configuration 
illustrated in Reference 16 and we employed approximately the same number of grid points 
utilized for the coarsest mesh employed in that reference. In fact, Gartling16 used five different 
meshes ranging from a minimum of 6 x 120 nine-node elements (3133 grid points) to a maximum 
of 40 x 800 elements (129,681 grid points). 

The essential features of the flow are clearly illustrated by the streamfunction and vorticity 
contours shown in Figure 6, while the values of I) and o along the contours are listed in Tables 
IV and V respectively. The flow separates at the step edge and forms a first recirculating zone 
at the lower wall, while a second recirculating zone appears downstream at the upper wall. After 
reattachment of this upper wall eddy the flow recovers towards a full developed configuration. 
The results of Figure 6 compare very favourably with some of the most reliable results reported 
in the l i t e r a t ~ r e . ' ~ . ' ~  More quantitative comparisons regarding the two separation zones are 
reported in Table VI. As we can see, our results are very close to the best results of Gartling, 
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6 1  

Figure 6. Laminar flow over a backward-facing step at Re = 800: (a) streamfunction contours (contour values are 
reported in Table IV); (b) vorticity contours (contour values are reported in Table V) 

Table IV. Values of streamline contours in Figure 6 (a) 

Contour Streamfunction Contour Streamfunction Contour Streamfunction 
letter * number * number * 

a -0.010 0 O.Oo0 4 0.400 
b - 0.020 1 0.100 5 0.500 
C - 0.030 2 0.200 6 0.502 

3 0.300 7 0.504 

Table V. Values of vorticity contours in Figure 6 (b) 

Contour Vorticity Contour Vorticity Contour Vorticity 
letter w number w number 0 

a - 2.0 0 0.0 3 60 
b - 4.0 1 2.0 4 8.0 
C - 6.0 2 4.0 5 10.0 

obtained with a much larger number of grid points, and are certainly better than the results 
obtained by Gartling with his coarsest mesh.16 Finally, in Figure 7 we compare our predictions 
of velocity and vorticity profiles across the channel with those of Gartling,I6 demonstrating 
excellent agreement. It must be pointed out, however, that our flow configuration is slightly 
shifted upstream and consequently the comparisons concern the same relative locations with 
respect to the reattachment point of the lower wall eddy (xRL) and the reattachment point of 
the upper wall eddy (xRU). Therefore our channel sections are at x = 6.96 (instead of x = 7 as 
in Reference 16) and x = 14.96 (instead of x = 15 as in Reference 14) in order to satisfy the 
proportions 

x/xRL = 7/6-10 6.9616'06 % 1.148 

and 

= 15/1048 14.96/10*45 1.431. 
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Table VI. Flow over a backward-facing step at Re = 800 
~ ~ 

Centre 
Streamfunction Vorticity Separation Reattachment 

point xR Reference Vortex x Y $ 0 point xs 

Lower 3.17 -019 - 0.034 - 2.34 0.00 
wall 

3.00 -0.17 - 0.033 - 2.5 1 0.00 

3.35 -0.20 - 0.034 - 2.28 0.00 

Upper 7.33 0 3  I 0,507 1.15 4.80 
wall 

7.50 0.33 0.507 0959 4.79 

7.40 0.30 0.506 1.32 4.85 

6.06 Present work 

5.8 1 GartlingI6 

6.10 Gartling" 

10-45 Present work 

10.48 Gartling'6 

1048 Gartling16 

3137 grid points 

3133 grid points 

129681 grid points 

3137 grid points 

3133 grid points 

129681 grid points 

x 

9 
L( 
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8 

(a> U 

0.0 0.5 1 .o 
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(b) 2, 
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x / x w =  1.148 
- Present work 

0 Reference 16 

x/xBu= 1.431 
Present work 
Reference 16 
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. -5.0 -2.5 0.0 2.5 

(c) w 

Figure 7. Laminar flow over a backward-facing step at Re = 800: (a) horizontal velocity profiles across the channel; 
(b) vertical velocity profiles across the channel; (c) vorticity profiles across the channel 
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5. CONCLUSIONS 

The incompressible two-dimensional Navier-Stokes equations have been solved by the finite 
element method using a new streamfunction-vorticity formulation. The streamfunction and 
vorticity equations have been completely uncoupled and solved in sequence, taking advantage 
of a procedure that fits naturally in the framework of finite element techniques and allows an 
easy evaluation of vorticity at no-slip boundaries. The present scheme achieves convergence, 
even for very high values of the Reynolds number, without the traditional need for upwinding. 
Two classical benchmark problems have been solved and the results obtained have been 
favourably compared with some of the most accurate results available in the literature. 
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